
Botaschanjan et al. / J Zhejiang Univ SCI   2004 5(5):587-593 587

                                                        

 

 

 

Testing agile requirements models 
 

BOTASCHANJAN Jewgenij†1, PISTER Markus†1, RUMPE Bernhard2 
(1Software & Systems Engineering, Technische Universität München, Boltzmannstr. 3, D-84758 Garching/Munich, Germany) 

(2Software Systems Engineering, Technische Universität Braunschweig, Mühlenpfordtstr. 23, D-38023 Braunschweig, Germany) 
 †E-mail: botascha@cs.tum.edu; pister@cs.tum.edu 

 

Abstract:    This paper discusses a model-based approach to validate software requirements in agile development processes 
by simulation and in particular automated testing. The use of models as central development artifact needs to be added to the 
portfolio of software engineering techniques, to further increase efficiency and flexibility of the development beginning 
already early in the requirements definition phase. Testing requirements are some of the most important techniques to give 
feedback and to increase the quality of the result. Therefore testing of artifacts should be introduced as early as possible, 
even in the requirements definition phase. 
 
Key words:   Requirements, UML, Model-based testing, Requirements evolution 
Document code:    A                            CLC number:    TP31 
 
 
INTRODUCTION 
 

One main purpose of requirements is to de-
scribe the functionality of software. Thus require-
ments often serve as a basis for contracts as well as 
for communication between customers and devel-
opers. However, they are usually captured in 
natural language accompanied by a few top-level 
informal drawings like use cases or activity dia-
grams that denote the structure of the functional-
ities in an abstract way. One disadvantage of natural 
language is that the developer has to cope with its 
ambiguity. The usage of precise or even formal 
descriptions for requirements helps getting along 
with this problem, because it allows increasing the 
degree of tool support. Especially in innovative 
environments, where the requirements as well as 
the design and the implementation rapidly change, 
the probability for inconsistencies between for-
mulated requirements and the implemented system 
is very high. Simulations of the behavior described 
in the specifications and automatisms to synchro-
nize the requirements with the design and the im-

plementation increase greatly the quality of the 
result and efficiency of the development. 

The approach taken here consists of a number 
of partially well proven techniques, applied in a 
new area. The key idea is to combine the advan-
tages of these techniques to gain additional synergy 
effects. The idea of upfront testing of the design 
came from the Agile Methods Community, namely 
Extreme Programming, the use of modeling tech-
niques from object-oriented software development 
methods (or from software engineering best prac-
tices in general), and the intensive use of code 
generators including behavior generators from 
embedded software development and in particular 
automotive industry, where simulation and lately 
also production code generation from high level, 
state based modeling techniques are already in use. 
The goal of this paper is to combine these concepts 
and transfer them to the earlier phases of require-
ments modeling. 

The usage of the Unified Modeling Language 
(UML) (OMG, 2002) as a formal requirements 
description language is the main topic of Section 2. 

Journal of Zhejiang University SCIENCE  
ISSN 1009-3095  
http://www.zju.edu.cn/jzus        
E-mail: jzus@zju.edu.cn 



Botaschanjan et al. / J Zhejiang Univ SCI   2004 5(5):587-593 588

In Section 3 the automated code generation to cope 
with evolution of systems is sketched. As one of the 
primary technical elements of model-based devel-
opment, the form of model-based tests for the 
production code is discussed in Section 4. In Sec-
tion 5 the validation of the requirements models is 
considered, which aims to leverage the quality of 
the specification. Section 6 gives the conclusion. 
 
 
REQUIREMENTS MODELLING WITH UML 
 

UML undoubtedly has become the most 
popular modeling language for software intensive 
systems used today. Its precision increases based on 
the ongoing standardization process. Thus with 
some adaptations and interpretation guidelines for 
the language an unambiguous description can be 
created with relatively small effort. An example for 
an adaptation can be found in Rumpe (2003). 

The UML consists of as many as nine kinds of 
diagrams usable for the description of the archi-
tecture and the design of the software. This variety 
of diagrams can be also used for requirements 
models as well. Therewith the developers do not 
have to handle different and incompatible modeling 
languages within the same project.  

Though using the same description language, 
there are some distinctions between design and 
requirements models:   

(1) Requirements models are usually less de-
tailed than design models.  

(2) Requirements models describe properties 
of the system as a black box and do not describe the 
internal structure. 

(3) Requirements models often refer to the 
system as well as to the environment (neighbor 
systems as well as user behavior), whereas design 
and implementation models concentrate on the 
system under development. 

Regarding Point 1, there is a general miscon-
ception about the formality and precision of lan-
guages and statements: A requirement can and 
should be captured using precise formal language. 
But even in formal language it is possible to for-
mulate abstract statements that only describe the 

details really needed in a precise way and not 
anything more (Kiczales et al., 1997). Although the 
UML has some deficits in allowing an abstract 
specificational modeling style, it is well suited to 
model abstract requirements. 

Regarding Point 2, it is clear today, that ab-
stract behavioral specifications work well for al-
gorithms, such as sorting. In business information 
systems instead, we observe the data structure and 
accompanying functionality to be an integral part of 
the requirements model even so it serves also as 
part of the design. Thus most requirements engi-
neering approaches distinguish between system 
requirements describing the black box view and 
constraints influencing the design, architecture and 
implementation (Wiegers, 2003; Gabb, 1998). The 
models of these constraints, which will be over-
taken from the specification into the architecture 
and design of the system, have to be explicitly 
distinguished from the regular design decisions, 
because they may not be changed arbitrarily with-
out consulting the stakeholders who formulated 
them. One possible solution is to assign the stereo- 
type «requirement» to such models. 

Requirements models are usually built from 
the user’s perspective on the system. Though hav-
ing vague ideas of the design of the application, the 
user often describes the system by formulating 
exemplary working steps that should be supported. 
By this, the software is described as a service to 
support working situations. These exemplary 
situations and the interaction with the software 
system can be described using sequence and object 
diagrams, but also using OCL constraints and class 
diagrams for data structures and invariants (Fig.1). 

The task of design models however is to define 
interfaces and precisely describe the behavior of the 
system in a white box manner. The black-box de-
scription provided by requirements is refined into 
the “white-box” architecture and design of the 
system. This motivates the notion of refinement, 
defined as a mapping between an abstract system 
interface and a set of concrete design elements (e.g. 
interfaces or classes). Approaches for the refine-
ment of specifications based on sequence diagrams 
can be found in Krüger (2000).  



Botaschanjan et al. / J Zhejiang Univ SCI   2004 5(5):587-593 589

 
 
 
 
 
 
 
 
 
 

 
The need for design models in requirements 

engineering is determined by the need to consider 
design constraints given by the customer. Usually 
these constraints are based on an “architecture” 
model in the form of one or more class diagrams.  
The behavior is captured with general descriptions 
in OCL and state charts and exemplary descriptions 
in the form of sequence and object diagrams. 
 
 
EXECUTABLE UML 
 

Today, we experience continuously evolving 
systems. Requirements, design and implementation 
evolve and the conformance between them has to be 
ensured continuously. 

This task needs methodological and tool 
support. Some UML-based tools today offer func- 
tionality to directly simulate models or at least 
generate parts of the test code for the software. The 
continuous improvement of this feature by tool 
vendors means that a sublanguage of UML will 
become a high-level programming language and 
modeling at this level becomes identical to pro-
gramming. This raises a number of interesting 
questions mainly dealing with the implications of 
using an executable UML: 

(1) Is it critical for a modeling language to be 
also used as programming language? For example 
analysis and design models may become over-
loaded with details that are not of interest in an 
early phase, because modelers are addicted to 
executability. 

(2) Is the UML expressive enough to describe 
systems completely or will it always be accompanied 

 

 
 
 
 
 
 
 
 
 
 
 

by conventional languages? How well are these 
integrated? 

(3) How will the toolset of the future look like 
and how will it overcome round trip engineering 
(i.e. mapping code and diagrams in both directions)? 
What are the implications of an executable UML on 
the development process? 

In Rumpe (2003; 2002) we partly discussed 
these and other issues and demonstrated how UML 
in combination with Java may be used as a 
high-level programming language (Fig.2). The ex- 
pression ‘executable’ in this context means the 
possibility to generate executable code, either in the 
form of system code or of executable test case code. 
Executable models are usually less abstract than 
design models, but are more compact and abstract 
than the implementation. Therefore, having an ex-
ecutable modeling language for requirements defi-
nition is not a contradiction, but instead an impor-
tant tool for analysis of requirements. Among other 
uses, the UML can be used for modeling tests at 
various levels (class, integration, and system tests). 
Thus it can be used to describe tests for verifying 
the requirements at many abstraction levels. 
 
 
MODEL-BASED TESTING 
 

The use of requirements models for the defi-
nition of tests and production code can be manifold: 

(1) Code or at least code frames stuffed with 
default behavior can be generated from a require-
ments model. 

(2) Test cases can be derived from requirements 
 

OCL

Java / C++ 
Class 

diagrams

Object 
diagrams 

Deployment 
diagrams

 

Sequence 
diagrams 

Requirements 
models 

Design-models and embedded 
implementation parts 

State
charts

Fig.1  Using UML for requirements and design models 



Botaschanjan et al. / J Zhejiang Univ SCI   2004 5(5):587-593 590

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
models that are not used for constructive generation 
of production code. For example behavioral models, 
such as statecharts, can be used to derive test cases 
that cover states, transitions or even paths. 

(3) Models can be used for an explicit descri- 
ption of a test case or a part thereof. For example a 
sequence diagram incorporates a sequence of inputs 
and expected outputs and thus can be directly used 
as a test case. 

The first two applications are for example 
discussed in (Briand and Labiche, 2001). Since the 
nature of requirements models is mainly descriptive, 
this section concentrates on the test case generation 
from requirement models and the use of models to 
describe tests. There already exists a huge variety 
of testing strategies (Binder, 1999; Briand and 
Labiche, 2001). A typical test, as shown in Fig.3 
consists of a description of the test data, the test 
driver and an oracle characterizing the desired test 
result. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
In object-oriented environments, the test data 

can be described by an object diagram (OD). It 
shows the necessary objects as well as concrete 
values for their attributes and the linking structure. 
The test driver can be modeled using a simple 
method call or, if more complex, a sequence dia-
gram (SD). An SD has the considerable advantage 
that not only the triggering method calls can be 
described, but it is possible to model desired in-
teractions and check object states during the test 
run.  

For this purpose, the Object Constraint Lan-
guage (OCL) (Warmer and Kleppe, 1998) is used to 
support the description of properties during and 
after the test run. It has proven efficient for mod-
elling test oracles using a combination of object 
diagrams and OCL properties. An object diagram in 
this case serves as a fine grained property descrip-
tion and can therefore be rather incomplete, just fo- 
cusing on the desired effects. The OCL constraints 

 
 
 
 
 
 
  
 
 
 
 

Fig.3  Structure of a test modeled with object diagrams (OD) and sequence diagrams 

objects under
test

o3 o4 

o2 OD OD 

OCL 

SD or method call 

Test data Test driver 

Objects under
test 

o1 

o5

OD OD 

+ 

Expected result and/or 
OCL contract as test oracle 

o3 o4 

o2 
o1

Test code
 generator 

State charts

Class diagrams 
__:

__:

__:

C++, Java …

Deployment diagram 

name 
name 

name 
OCL 

System Test code

Sequence 
diagrams Object diagrams

Fig.2  Input of UML-models for code generation 

Parameterized 
code generator 



Botaschanjan et al. / J Zhejiang Univ SCI   2004 5(5):587-593 591

used can also be general invariants or specific 
property descriptions. The advantage of using OCL 
for the property description is the possibility to 
formulate general predicates for values of attributes. 
Thus, the same result description or at least parts of 
it can be reused for several test inputs.  

As already mentioned, being able to use the 
same, coherent language for modeling the produc-
tion system and the tests give us a good integration 
between both tasks. It allows the developer to im-
mediately define tests for the production system 
developed. It is imaginable that in a kind of 
“test-first modeling approach” (Link and Fröhlich, 
2002; Beck, 2001) the test data in the form of pos-
sible object structures are developed before the 
current implementation. This test-first approach 
perfectly fits the modeling of requirements. The 
models mostly describe the behavior of the system 
at the interfaces almost in a form that these re-
quirements can be used as test drivers as well. For 
the creation of tests, the developers mainly have to 
create representative test inputs.  

Fig.4 shows such a sequence diagram that is 
typically used for a test case validation. The initial 
part (marked with the stereotype «trigger») acts as 
driver for the test; the other interactions of the se-
quence diagram are observations to be made during 
a successful test run. This sequence diagram was 
derived almost directly from a requirements defi-
nition and only little extra effort was necessary to 
transform it into a test (namely adding the  stereo- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

type). The underlying data structure was reused 
from exemplaric requirements models, namely an 
object diagram. Furthermore, the OCL property 
description at the end of the sequence diagram is 
perfectly suited for a post-condition check. 

 
 

VALIDATION OF REQUIREMENTS 
 

In addition to the validation of the imple-
mentation to ensure conformity with the modeled 
requirements, the quality of the requirement defi-
nitions themselves has to be validated. It is of 
strong interest to gain feedback on the formulated 
requirements as early as possible to prevent errors 
that are discovered late and therefore expensive at 
the end. This can be obtained through reviews, but 
even better through simulation of the requirements 
models, in order to explore the specified behavior 
manually (Heymans and Dubois, 1998) or to run 
automated tests on it.  

As explained before, sequence and object 
diagrams are perfectly suited for defining tests, 
assuming they are detailed enough. This imposes 
some additional work on the requirements model, 
but results in a highly valuable early feedback al-
ready in the requirements definition phase. The 
major problem with this approach is usually the 
missing complete behavioral description for ele-
ments that participate in a test. For example it may 
be that the behavior of a component is only defined 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Test driver 

«trigger» 
HandleBid (bid) 

OCL constraints  
describeproperties  
during the test run 

Copper 912: 
Auction 

BidPol: 
BiddingPolicy

ValidateBid (bid)

Return OK

Return t

NewCurrentClosingTime (copper912, bid)

t.time ==  
bid.time+extensionTime 

Sequence 
Diagram 

TimePol: 
TimingPolicy

Fig.4  Test case description with a sequence diagram



Botaschanjan et al. / J Zhejiang Univ SCI   2004 5(5):587-593 592

in terms of a finite number of sequence diagrams, 
but no implementation or state chart is given. In this 
case, the implementation has to be simulated ac-
cording to the given information. We can for ex-
ample use an approach similar to (Krüger, 2000) or 
the Play-In/Play-Out Approach (Harel and Rami, 
2003) to construct the overall behavior from the 
given sequence diagrams. For example Fig.5 de- 
monstrates a method to check the consistency be-
tween requirements formulated with sequence 
diagrams and OCL conditions.  

This technique is also useful if interaction 
occurs between components and the environment or 
neighbor systems that actively participate in tests, 
but will not become a part of the implementation. 
The technique allows simulating the environment 
for testing purposes. It is noticeable that if tests and 
production code are generated from the same 
models, both tests and code are consistent with each 
other (provided that the generators are correct) and 
therefore errors in the models cannot be detected. It 
is therefore important to generate tests and im-
plementation from different models. 

The idea of automatically creating a running 
system from the requirements model is an extension 
of the concept of rapid prototyping. The automatic 
generation delivers a prototype that checks the 
desired behavior of the system. During the process 
of generation, an initial analysis step (type or data 
flow checking, etc.) may reveal inconsistencies be- 
tween requirements models. Furthermore, by recei- 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ving fast feedback through simulation, the devel-
opers and customers can early on get an idea of the 
running system and adapt the specification before 
having designed the implementation. In addition to 
checking the consistency, this technique can be 
especially useful for validating the accuratacy of a 
specification by presenting the customer the whole 
defined functionality. This decreases the effort to be 
spent for changes and therefore leads to higher 
software quality and reduced development costs.  

However, the generation of automated tests 
goes considerably beyond the mere prototyping 
approach. First, the automated tests can be rerun 
and used in regression testing not only during the 
requirements modeling, but also during design and 
implementation. Second, automated tests can be 
run by everyone in the project, not only by the 
experts who know about the requirements and thus 
about desired behavior. Third, experiments with the 
testing approach have shown that in the long run 
automated tests pay off, even though it is initially 
more time consuming to develop tests. Using re-
quirements models for that purpose also increases 
the efficiency of test development.  
 
 
CONCLUSIONS 
 

In this paper we have described a pragmatic app- 
roach to introducing early feedback in the re-
quirements definition through model-based testing. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5  Testing requirements described with sequence diagrams against requirements described with OCL 

Sequence 
 Diagrams 

 

OCL Requirements 
Models 

Simulation & Test 

 

Prototypic 
system 

 

Test cases 

 

Statechart 

Test 

Generate 

Generate 



Botaschanjan et al. / J Zhejiang Univ SCI   2004 5(5):587-593 593

The approach uses models as primary artifact for 
requirements and design documentation, code 
generation and test case development. The valida-
tion of the requirements by executable UML mod-
els allows the developers to detect errors in the 
specification earlier. The test case generation from 
requirements models also allows checking the 
correctness of the implementation and thus enables 
validation of the correctness of transformations of 
the code.  

One might argue that requirements elicitation 
is nowadays usually a step where very informal 
techniques are used. Mostly, requirements elicita-
tion results in a specification written in natural 
language. Only after their approval are the re-
quirements mapped into high level analysis models. 
However, the approach taken here, where the un-
derstood requirements are translated into a machine 
understandable form, ideally also in executable 
form, has some advantages. It greatly facilitates the 
feedback of the elicitation process with the user, 
allows automated consistency checks and tests, as 
well as analysis for completeness of requirements. 
This, however, is not applicable in every project, as 
there may be obstacles like user demands, legal 
requirements, or very large groups of project 
members. But we are sure that an increasingly 
higher portion of projects will be able to use an 
approach that includes the concepts described here. 

There already exist approaches that are 
working on this topic. For example, the Albert II- 
approach (Heymans and Dubois, 1998) maps ex-
tended MSCs to agent-systems and offers mecha-
nisms for analysis. The Play-In/Play-Out Approach 
uses extended MSCs for requirements elicitation 
and validation.  However these approaches are not 
very well integrated with the UML in its current 
version so the integration with the design task is not 
as efficient as proposed here.  

Model based requirements engineering in 
evolutional systems will become successful only if 
well assisted by tools. This includes parameterized 
code generators for the system as well as for ex-
ecutable test drivers, analysis tools and comfortable 
help for systematic transformations on models. Fur- 

  

thermore, an important prerequisite for the pre-
sented approach is the support of tracing and re-
finement techniques which allow relating re-
quirements models with their design and/or im-
plementation counterparts in order to automate the 
reuse of test cases on different abstraction levels. 
 
References 
Beck, K., 2001. Aim, Fire (Column on the Test-First Ap-

proach). IEEE Software. 
Binder, R., 1999. Testing Object-Oriented Systems. Models, 

Patterns, and Tools. Addison-Wesley. 
Briand, L., Labiche, Y., 2001. A UML-based Approach to 

System Testing. In: M. Gogolla and C. Kobryn (eds): 
«UML»−The Unified Modeling Language, 4th Intl. 
Conference, LNCS 2185. Springer, p.194-208. 

Gabb, A., 1998. The Requirements Spectrum. Proceedings 
of the first regional Symposium of the Systems Engi-
neering Society of Australia. 

Harel, D., Rami, M., 2003. Specifying and executing be-
havioral requirements: the play-in/play-out approach. 
Journal on Software and Systems Modeling, SOSYM, 
2(2): 82-107.  

Heymans, P., Dubois, E., 1998. Scenario-based techniques 
for supporting the elaboration and the validation of 
formal requirements. Requirements Engineering 
Journal, 3:202-218. 

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopez, 
C., Loingtier, J.M., Irwin, J., 1997. Aspect-Oriented 
Programming. ECOOP’97−Object Oriented Pro-
gramming, 11th European Conference, Jyväskylä, 
Finnland, LNCS 1241.  

Krüger, I., 2000. Distributed System Design with Message 
Sequence Charts. Ph.D. Thesis, Technische Universität 
München. 

Link, J., Fröhlich, P., 2002. Unit Tests mit Java. Der 
Test-First-Ansatz. dpunkt.verlag. 

OMG, 2002. Unified Modeling Language Specification. 
V1.5. 

Rumpe, B., 2003. Agiles Modellieren mit der UML. 
Habilitation Thesis. Technische Universität München, 
Institut für Informatik. 

Rumpe, B., 2002. Executable Modeling with UML. A Vi-
sion or A Nightmare? In: Issues & Trends of Informa-
tion Technology Management in Contemporary Asso-
ciations, Seattle. Idea Group Publishing, Hershey, 
London, p.697-701. 

Warmer, J., Kleppe, A., 1998. The Object Constraint Lan-
guage. Addison-Wesley. 

Wiegers, K.E., 2003. Software Requirements. Microsoft 
Press. 


